
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 11. November 2019
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler

Algorithms & Data Structures Exercise sheet 8 HS 19

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 18 November 2019, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus
points.

Exercise 8.1 Search Trees.

a) Draw the resulting tree when the keys 1,3,7,4,5,8,6,2 in this order are inserted into an initially empty
binary (natural) search tree.

Solution:

1

3

2 7

4

5

6

8

b) Delete key 4 in the above tree, and a�erwards key 7 in the resulting tree.

Solution: Key 4 has one child, so it can just be replaced by 5:



1

3

2 7

5

6

8

Key 7 must either be replaced by its sucessor key, 8, or its precesessor key, 6. If key 7 is replaced by
its sucessor:

1

3

2 8

5

6

If key 7 is instead replaced by its predecessor:

1

3

2 6

5 8

c) Draw the resulting tree when the keys are inserted into an initially empty AVL tree. Give also the
intermediate states before and a�er each rotation that is performed during the process.

Solution:

Insert 1 and then 3:

2



1

3

Insert 7:

1

3

7

3

1 7
Rotate le�. Pivot = 3

Insert 4 and then 5:

3

1 7

4

5

3

1 7

5

4

3

1 5

4 7

Rotate le�. Pivot = 5 Rotate right. Pivot = 5

Insert 8:

3

1 5

4 7

8

5

3

1 4

7

8

Rotate le�. Pivot = 5

Insert 6 and 2:

3



5

3

1

2

4

7

6 8

d) Delete key 7 in the above tree, and a�erwards key 8 in the resulting tree.

Solution:

Delete 7:

5

3

1

2

4

6

8

Delete 8:

5

3

1

2

4

6

3

1

2

5

4 6

Rotate right. Pivot = 3

∗Exercise 8.2 Maximum Depth Di�erence of two Leaves.

Consider an AVL tree of height h. What is the maximum possible di�erence of the depths of two leaves?
Describe which structure such trees need to have, and draw examples of corresponding trees for every
h ∈ {2, 3, 4}. Derive a recursive formula (depending on h), solve it and use induction to prove the
correctness of your solution. Provide a detailed explanation of your considerations.

Hint: For the proof the principle of complete induction can be used. LetA(n) be a statement for a number
n ∈ N. If, for every n ∈ N, the validity of all statements A(m) for m ∈ {1, . . . , n − 1} implies the

4



validity of A(n), then A(n) is true for every n ∈ N. �us, complete induction allows multiple base cases
and inductive hypotheses.

Solution:

For an AVL-tree T with a root node v and height h, we can distinguish the following 3 cases:

• Both sub-trees Tl(v) and Tr(v) have height h− 1

• Tl(v) has height h− 1 and Tr(v) has height h− 2, or

• Tl(v) has height h− 2 and Tr(v) has height h− 1

As we are interested in themaximum depth di�erence of two leaves, we can disregard the �rst case, and
focus on sub-trees that have heights that di�er by 1. Without loss of generality, we can take the second
case, assuming that the le� sub-tree will have height of h− 1, while the right sub-tree will have height
of h− 2. If the le� sub-tree is an AVL-tree of height h− 1, then the right tree must be an AVL-tree of
height h− 2. �is comes from the properties of an AVL tree, because if at any time they di�er by more
than one, rebalancing is done to restore this property. As a result of this, the entire tree T will have a
height of h and as such there will be a leaf on the le�-subtree with this depth.

�e �gure below illustrates the AVL trees of height h ∈ {1, 2, 3}:

In general, we consider trees with the following structure:

�e le� subtree Tl(v) contains a leaf of depth h (while Tl(v) has height of h−1), the right subtree Tr(v)
contains a leaf of depth h− 1 (while Tr(v) has height h− 2). �e maximum possible di�erence of the
depths of two leaves in the tree (with height h) is therefore 1 greater than the maximum di�erence of
the depths of two leaves in the right subtree (with height h − 2). For h = 2 and h = 3, the maximum
depth di�erence is exactly 1.

As a result, we have the following recursive formula for the maximum di�erence of the depths of two
leaves in a tree of height h:

D(2) = 1, D(3) = 1, D(h) = 1 +D(h− 2) for all h ≥ 4. (1)

From the above, we can assume thatD(h) = bh/2c. We prove this assumption using induction over h.

Base case I (h = 2): D(2) = 1 = b2/2c.

5



Base case II (h = 3): D(3) = 1 = b3/2c.

Induction hypothesis: Assume that the property holds for some h: D(h− 2) = b(h− 2)/2c.

Inductive step: ((h− 2)→ h): From the recursive de�nition of D(h), we have:

D(h) = 1 +D(h− 2) = 1 + b(h− 2)/2c = 1 + bh/2− 1c = 1 + bh/2c − 1 = bh/2c. (2)

∗Exercise 8.3 Fibonacci numbers.

�e Fibonacci numbers are de�ned by F (0) := 0, F (1) := 1, and F (n) := F (n − 1) + F (n − 2) for
n ≥ 2. Prove that for all n ≥ 0,

F (n) =
1√
5

(φn − ψn) ,

where φ = (1 +
√

5)/2 and ψ = (1−
√

5)/2. Show that this formula implies F (n) = Θ(φn).

Hint: You can solve the problem inductively by direct (and nasty) calculation. If you want to understand
where the formula comes from, you should proceed by the following steps.

1. Show that φ and ψ are the roots of the equation x2 = x+ 1.

2. Show that if a real number x satis�es x2 = x+ 1, then for all n ≥ 2 it satis�es xn = xn−1 +xn−2.
Hint: �is is trivial!

3. Consider the set V := {f : N0 → R | f(n) = f(n − 1) + f(n − 2) for all n ≥ 2}. Show that V
forms a vector space, and that the two functions G(n) := φn and H(n) := ψn are in V . In fact,
it is easy to see (you don’t need to formally prove this, but give an intuitive argument) that V has
dimension 2, and that G and H are independent. So they form a basis.

4. Conclude that there must be two constants a, b ∈ R such that F = a ·G+ b ·H .

5. Compute a and b by looking at the special cases F (0) = a ·G(0) + b ·H(0) and F (1) = a ·G(1) +
b ·H(1).

6. Conclude that Fn = 1√
5
(φn − ψn) for all n ≥ 0.

Solution:

We solve the problem as in the hint.

1. By the p-q-formula that you learned at school, the solutions of x2 + px + q = 0 are −p
2 ±

1
2

√
p2 − 4q. Here we have p = q = −1.

2. We just multiply both sides of x2 = x+ 1 with xn−2.

3. Let f, g ∈ V and α ∈ R. �en f + g ∈ V because (f + g)(n) = f(n) + g(n)
f,g∈V

= f(n− 1) +
f(n− 2) + g(n− 1) + g(n− 2) = (f + g)(n− 1) + (f + g)(n− 2).

Likewise, αf ∈ V because α · f(n)
f∈V
= α · (f(n− 1) + f(n− 2)) = α · f(n− 1) +α · f(n− 2).

�erefore, V is a vector space. It has dimension 2 because (being slightly sloppy) a function in V
is determined by the �rst 2 values.1 G andH are in V by items 1 and 2, and they are independent

1A rigorous mathematical argument would be to consider the mapping P : V → R2; f 7→ (f(0), f(1)). It is straightfor-
ward to check that this is a homomorphism. Moreover, it is injective (any two functions in V which coincide on 0 and 1 agree
everywhere, since they satisfy the same recurrence relation) and surjective (for every x, y ∈ R we can construct a function
in V with f(0) = x and f(1) = y). Hence, P is an isomorphism, and thus V has the same dimension as R2.

6



because they are not multiples from each other. �is can be argued in many ways, for example:
if they were multiples of each other, thenG = Θ(H) would have to hold. However, this does not
hold since G(n)→∞ and H(n)→ 0 (since |ψ| < 1) for n→∞.

4. �is follows since any two independent elements of a vector space of dimension 2 form a basis.

5. By de�nition of F,G,H , we have F (0) = 0, F (1) = 1, G(0) = 1, G(1) = φ, H(0) = 1,
H(1) = ψ. Hence, a and b must satisfy

a+ b = 0,

a · φ+ b · ψ = 1.

�is is a linear system of equation, and you have learned in linear algebra how to solve them
systematically. Here, we can shortcut by rewriting the �rst equation as b = −a, and plugging
this into the second equation. �is gives a · (φ − ψ) = 1, or a = 1/(φ − ψ) = 1/

√
5, and thus

b = −a = −1/
√

5.

6. �is is just a summary of what we have shown: we have F = a · G + b · H , which is in other
words that for all n ≥ 0 we have

F (n) = a ·G(n) + b ·H(n) =
1√
5

(φn − ψn) .

Finally, since H(n)→ 0 and G(n)→∞ for n→∞, we have F = Θ(G) = Θ(φn).

Exercise 8.4 Online supermarket (1 point).

Assume that you work in a large online supermarket that o�ers di�erent types of goods. At every
moment you have to know the number of goods of each type that the supermarket currently o�ers. Let
us denote the number of goods of type t by St. At any moment St can either be decreased (if someone
has bought some goods of type t) or increased (if some goods of type t have been delivered from the
manufacturer). Also your boss can ask you how many goods of type t does the supermarket currently
o�er. So you can receive three types of queries: to decrease St by 0 < x ≤ St, to increase St by x > 0
or to return St.

Assume that at each moment number of di�erent types of goods that the supermarket o�ers at that
moment is bounded by n > 0, but the number of types of goods that the supermarket can potentially
o�er might be much larger than n. Consider the following example: n = 3, at 14:00 the supermarket
can o�er 5 balls, 1 doll and 4 phones and at 14:15 it can o�er 6 balls, 3 chairs and 12 pencils.

Provide an algorithm that can handle each query in timeO(log n). You may assume that initially all St
are zero.

Solution:

We store the goods in an AVL-tree. �at is, for good t we use t as the key that determines the position
in the AVL-tree, and we store the value St in the node of t. We only store a good t in the AVL-tree if
St > 0.

For all three types of queries, we �rst search the key t in the AVL-tree, which takes time O(log n). If
t does not exist in the tree, then we give out 0 if we are asked for the number of elements; we give an
error for a decrease query; and we insert the key t into the AVL-tree with value St := x if we get an
increase query. �e la�er operation takes time O(log n), the other two take constant time. However,
since we �rst need to search for the key, all queries need total time O(log n).

7



If the key t exists, we proceed similarly. Depending on the query, we return St, or in-/decrease St by
x. Moreover, if we decrease St to zero then we delete the key from the AVL-tree, which takes time
O(log n). Again, all queries take a total time of O(log n), as required.

Exercise 8.5 Nim game (2 points).

Consider the following game in which two players move alternately: at the beginning there are 2 piles
of stones with n1 and n2 stones, respectively. During a move a player chooses a non-empty pile and an
integer k > 0, and removes s = k2 stones from the chose pile. (Obviously, s cannot be greater than the
number of stones in the chosen pile). Player 1 makes the �rst move. A player who cannot move loses.
For example, if all piles are empty at the very beginning, Player 1 loses.

a) Provide a dynamic programming algorithm that, given n1 and n2, determines which player wins
the game if both play optimally. You can assume that arithmetic operations take unit time. You can
obtain full points with a dynamic programming with a DP table of dimension 2.

Address the following aspects in your solution:

(a) Dimension of the DP table: What is the dimension of the tableDP [. . .]? What range do you have
in each dimension?

(b) De�nition of the DP table: What is the meaning of each entry?

(c) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(d) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(e) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

(f) Running time: What is the runtime of your solution?2 Does the algorithm have polynomial
runtime?

Solution:

Dimensions of the table:

�e table is 2-dimensional, the �rst dimension ranges from 0 to n1, and the second dimension ranges
from 0 to n2.

Meaning of a table entry (in words): For 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2, consider the position in
which the �rst pile has i stones, the second pile has j stones, and player αmoves next (where α is 1
or 2). �e entry DP [i, j] is 1 if player α has a winning strategy for this position, and 0 otherwise.

Computation of an entry (initialization and recursion): We initialize theDP-table byDP [0, 0] =
0.

For all other positions (i, j), there are still valid moves. Assumewithout loss of generality that player
1 moves at some position (i, j), where i > 0 or j > 0. Player 1 wins if and only if she can make a
move that leads to a losing position for player 2. �erefore,DP [i, j] = 1 if and only if there exists a
k such that
2By this formulation, we expect you to specify the worst case runtime in Θ-notation.

8



• k2 ≤ i and DP [i− k2, j] = 0, or

• k2 ≤ j and DP [i, j − k2] = 0.

We could write this concisely, e.g., by the formula

DP [i, j] = 1−min

(
min

1≤k≤
√
i
(DP [i− k2, j]), min

1≤k≤
√
j
(DP [i, j − k2])

)
.

However, this formula is harder to understand than the other description, so the other description
is preferable.

Order of computation:

�ere are several ways for the order of computation. One possibility is to �rst compute all values
DP [i, 0] in increasing order of i, then all valuesDP [i, 1] in increasing order of i, and so on. Another
way would be to compute the �elds by increasing order in i + j, i.e, �rst compute the �eld with
i+j = 0, then all �elds with i+j = 1 (in arbitrary order), then all �elds with i+j = 2 (in arbitrary
order), and so on. �is works since in order to compute DP [i, j], we only need to look up entries
for which i+ j is strictly smaller.

Computing the output:

�e output is in the �eld DP [n1, n2].

Running time in O-notation in terms of n1 and n2:

�e table has size n1 ·n2. To compute the entryDP [i, j], we need to take a minimum over Θ(
√
i+√

j) values, which needs time Θ(
√
i +
√
j). (Except for i = j = 0, but this will only contribute

O(1) and is negligible.) �erefore the total runtime is

Θ(

n1∑
i=0

n2∑
j=0

√
i+
√
j︸ ︷︷ ︸

=:T

).

To estimate T , we �rst compute an upper bound by observing that
√
i ≤ √n1 and

√
j ≤ √n2.

Hence,

T ≤
n1∑
i=0

n2∑
j=0

(
√
n1 +

√
n2) = (

√
n1 +

√
n2) ·

n1∑
i=0

n2∑
j=0

1 ≤ O((
√
n1 +

√
n2) · n1 · n2)

For the lower bound, we make the sum smaller by restricting to the range n1/2 ≤ i ≤ √n1 and
n2/2 ≤ j ≤

√
n2. In this range, we have

√
i ≥

√
n1/2 and

√
j ≥

√
n2/2. Hence,

T ≥
n1∑

i=n1/2

n2∑
j=n2/2

√
n1
2

+

√
n2
2

=
1√
2

(
√
n1+
√
n2)·

n1∑
i=n1/2

n2∑
j=n2/2

1

︸ ︷︷ ︸
=n1·n2/4 up to rounding

≥ Ω ((
√
n1 +

√
n2) · n1 · n2) .

Since the upper and lower bound match, we obtain T = Θ((
√
n1 +

√
n2) ·n1 ·n2). We remark that

this can be equivalently wri�en as T = Θ(max(
√
n1,
√
n2) · n1 · n2)

�is time is not polynomial in the input size, since the input size is only log2 n1 +log2 n2. However,
it is polynomial in the quantities n1 and n2, and thus the algorithm has pseudopolynomial runtime.

9



b) Finally, assume you have already �lled out the DP table, and that the current player (say, it is Player 1)
is in a winning position. Describe how you can �nd a winning strategy, i.e., how you can determine
a move such that a�er her turn, Player 2 is in a losing position.

Solution:Once the DP table is �lled andwe are in a winning position (i,j), we obtain a winningmove
by tracing back the “reason” for the one inDP [i, j]. I.e, we �nd a k such thatDP [i− k2, j] = 0 or
DP [i, j − k2] = 0 and this de�nes us the winning move. �is needs time O(

√
i +
√
j), i.e., linear

time in the number of moves in that position. If we invest slightly more work when we �ll out the
table, we can decrease this time: when we �ll the table, we compute this move anyway. So when we
�ll out the table, then for each cell with a one-entry we can also store the winning move in this cell
with additional time O(1) per cell. �is allows us to trace back the winning strategy faster (in time
O(1) for each move, since we only need to look up the stored entry), but it does not decrease the
overall asymptotic runtime when we consider all parts of the algorithm (creation of the table and
tracing back) together.

10


